QSORT -- Version 3.20

Text File Sorting Utility

Copyright 1985, 86, 87, 88 - Ben Baker

All rights reserved

Introduction
Notation

Table of Contents

The QSORT Command and Options
The /<key_spec> Parameter

The /F<len>
The /T[<tag>
The /D[<fiel

Parameter
] Parameter
ds>] [<delim>[<term>]] Parameter

The /R Parameter

The /S[V] Pa

rameter

The /? Parameter

Lexical Sorting

Examples

Error Messages
Command Line
Memory Error
I/0 Errors
Internal Err

and Return Codes
Errors
]

ors

ERRORLEVEL Return Codes

Implementation Notes

General Info
Performance
Performance
Performance
Performance

About Shareware

rmation

and DOS Configuration
and Input Record Type
and Sort Keys

and File Size

[

~NSooddbdWNDDN

10

12
12
14
14
15
15

16
16
16
19
19
20

21

Introduction

QSORT was first designed to be a replacement for, and to overcome
the limitations of DOS SORT, but has been enhanced a number of
times and moved to new compilers twice. The current version will
sort files whose size 1s limited only by available disk space.
File name(s) may be given explicitly or QSORT will sort from
standard input to standard output, and so, may be used in pipes
or with redirection. Multiple keys may be specified. Binary
files with fixed-length records may be sorted, provided only that
keys are ASCII character strings.

QSORT tries to be very protective of your data. If QSORT has an
error of any kind, it will terminate with the input file still
intact, and will return to DOS with a non-zero ERRORLEVEL. When
QSORT successfully completes a sorting a file, it terminates with
ERRORLEVEL set to zero.

The command line syntax is a super-set of SORT's, so QSORT may be
used without other changes in batch files using SORT, but in most
cases you will probably want to make use of QSORT's greater capa-
bilities.
Notation

In defining the command line and its various parameters, the
following notation is used:

[optional] items are enclosed in square brackets.

<variable> items appear in lower case and are enclosed in
angle brackets. They are replaced by actual data such
as a file name. The angle brackets are NOT typed.

THIS | THAT Choices are separated by a vertical bar.
Select one or the other but not both.

[THIS | THAT] When the choices are enclosed in square

brackets, you may also select neither.

REPEAT. . . The ellipsis (. . .) means the item to its left
may be repeated as many times as necessary.

UPPER CASE items and all special characters not defined
above represent themselves. They are entered exactly
as they appear.

QSORT Text Sorting Utility Page 2
The QSORT Command and Options

QSORT is invoked with the following command:

QSORT [<in_file> [<out_file>]] [/<key_spec>. . .]
[/F<len> | /T[<tag> | /D[[<fields>][<delim>[<term>]]]
[/R] [/SIV]] [/?]

Note that all parameters on the command line are optional. The
<in_file> and <out_file> parameters are "ASCII-Z" file speci-
fiers. They may contain disk and path information in the stan-
dard DOS format, but must not contain "wild-card" characters. If
<in_file> is missing, QSORT sorts from standard input to standard
output. These are files defined and opened by DOS before QSORT
is loaded. (See your DOS manual concerning the use of redirec-
tion and pipes.)

If <in_file> is given but <out_file> is missing, QSORT creates a
temporary file in the directory containing <in_file> and sorts to
the temporary file. On successful completion of the sort,
<in_file> is deleted and the temporary is renamed to <in_file>.
The effect is an apparent "sort-in-place."

If both file names are given, <in_file> is wunchanged and the
sorted output 1is written to <out_file>. ©Note that the following
two commands are exactly equivalent:

QSORT FILE.TXT FILE.SRT

QSORT <FILE.TXT >FILE.SRT
In the first, QSORT opens the files. 1In the second, redirection
is specified and DOS opens the files. The result is the same.

It is an error QSORT can't detect if you mix these. For in-
Stance:

QSORT FILE.TXT >FILE.SRT

will result in a sort-in-place. QSORT will open FILE.TXT but
won't know DOS has opened FILE.SRT for it, and will ignore it.

The /<key_spec> Parameter

Up to 30 /<key_spec> parameters may be used to specify sort keys
and are ordered major to minor from left to right. The
/<key_spec> argument has the form:

/IL][+]|-1[<field>.] [<col>] [:<length>]

Note that all elements of this argument are "optional," but at
least one element must be present following the slant-bar (/).

QSORT Text Sorting Utility Page 3

The 'L', if present, specifies "lexical" sequence for this key.
Lexical sequence 1is ordered first by spelling, then, when keys
have identical spelling, by capitalization.

The minus (-) sign reverses the sorting order for this key, while
the plus (+) sign (or no sign) specifies normal sort order.

There are three numbers associated with every sort key; the field
number, the starting column within the field, and the length of
the key in characters. Any, or all of them may be given in a
/<key_spec> parameter. QSORT wuses punctuation to identify each
number. A number followed by a period (.) is a field number. A
number preceded by a colon (:) is a length number. A column num-
ber has no punctuation associated with it. It follows the field
number, i1f any, and precedes the length number, if any.

The [<field.>] element is wused only for "delimited-field"
records, and locates this key within a particular field. The
value of <field.> must be less than or equal to the number of
fields defined with the /D parameter (see below). If [<field>.]
is omitted when sorting delimited-field records, the first field
is assumed. For <consistency, all records are assumed to have
"fields." In all cases except delimited-field records, there is
precisely one field, and it spans the entire record.

If present, [<col>] defines the beginning column of the key. If
omitted, column 1 is assumed. In the case of delimited-field
records, column 1 is the first character of the identified field.
In all other cases, column 1 is the first character of the
record.

If present, [:<length>] defines the key 1length in columns (or
characters) . If [:<length>] is omitted, the rest of the record,
or field in delimited-field records, is assumed to be part of the
key.

If no key parameters are given, the entire record, or the entire
first field is the key.

When sorting variable-length records, any key which begins beyond
the end of its field in a particular record is treated as a null

(zero length) key for that record, and will sort low relative to
all records with non-null values for that key. When sorting
fixed-length records, all defined keys must fall within the de-
fined record length. <key_spec> parameters must appear in order

of importance, primary key first.
The /F<len> Parameter

The /F<len> parameter denotes the record length for a file of

fixed-length records. All records in the input file MUST be ex-
actly <len> bytes long. The records need not (but may) be termi-
nated with a CR/LF sequence. They may contain any data, even bi-

nary data, but the keys must Dbe ASCII strings. Strings may be

QSORT Text Sorting Utility Page 4
terminated with a null (binary zero) character, or may be padded
with trailing spaces to the full length of the key.

Note that QSORT does not attempt to support Pascal style strings.
These are strings which begin with a character whose binary wvalue

is a character count. This is followed by <count> characters of
ASCII data, which in turn is followed by random data out to the
maximum length of the string. These strings may be used as keys,

but the programmer must insure that either the last real charac-
ter is a null character, or the key is padded to its full length
with spaces. QSORT must be told that the key begins in the sec-
ond character position (the first character of real data).

The /T[<tag>] Parameter

The /T[<tag>] parameter, if present, indicates that the "records"
to be sorted may be more than a single line long.

If <tag> 1s also present, it defines a character to be used to

tag the "end-of-record." If <tag> 1is not present, the first
empty line terminates the record. For this purpose, "empty"
means "no characters." A line containing but a single space is

NOT empty! A line may be "tagged" by placing the <tag> character
anywhere on the last line of a logical record. The entire line,

including the tag character will appear as the last line of the
record.

Some characters cannot be wused to represent themselves in a DOS

command line. For that reason, QSORT uses codes to represent
them. These codes are actually a pair of characters. The first
is always a back-slash (\). The second character identifies the
special character it represents. The following is a table of

characters recognized by QSORT:

\B - Space character 20 Hex 32 Decimal
\F - Form feed character 0C 12

\L - Line feed character 0A 10

\N - Newline sequence

\R - Carriage return 0D 13

\T - Tab character 09 9

\\ - Back-slash character itself

Thus an invisible tab character might be used to end a multi-line
logical record. The other characters in this code list don't
make much sense in this context, but will be useful in the /D
parameter (see below).

Note that the /F<len> and /T[<tag>] parameters are incompatible,
and may not both be specified.

The /D[<fields>][<delim>[<term>]] Parameter

The /D[<fields>][<delim>[<term>]] parameter, if present, states
that this file contains delimited-field records. In other words,
QSORT Text Sorting Utility Page 5

a record is made up of distinct, wvariable length fields separated
from one another by a particular character, or "delimiter."
Records are separated, or "delimited" by the "newline sequence."

The <fields> element defines the number of variable length fields
contained in each record. All fields must be present in each and
every record. A "null" field will be represented by two succes-
sive delimiter characters. There must always be exactly <fields>
minus 1 delimiter characters in a record.

If a <delim> character 1is present, QSORT uses it as a field de-
limiter character. Otherwise a comma (,) is assumed to be the
delimiter.

If a <term> character is also present, QSORT uses it as a record
delimiter character. In fact, it 1literally redefines the
"newline sequence" to QSORT. More on this in a moment.

The same character codes listed under the /T parameter may be

used to represent these characters. Note that "\N" means the
"newline sequence." If <term> is not present, this is the CR-LF
character pair. If <term> is present, it represents the <term>
character. Thus:

/D3\N\T

says that the records are separated by tab characters, and that
the three fields within each record are also separated by tab
characters. On the other hand:

/D3\N

says that each group of three 1lines constitutes one logical
record, and each line is a field within that record.

The /D parameter is always incompatible with the /F parameter,
and usually incompatible with the /T parameter, but there is an
exception when <fields> is missing, or is equal to 1.

If <fields> equals 1 (or is missing) it says that there is only
one field spanning the entire record. But that is what QSORT as-
sumes 1f the whole /D parameter is missing! So why bother?

In most ASCII files a "line" ends with a carriage return charac-
ter (CR) followed by a line feed character (LF). QSORT searches
for this character pair when it 1is looking for a "newline se-
quence."

But not all files use CR-LF as a line terminator. For instance,
files imported from UNIX or XENIX usually terminate lines with a

QSORT Text Sorting Utility Page 6
naked line feed character! And some editors produce files whose
lines end in a naked carriage return character! So:

/D, \L

says "for this file, the newline sequence is a single line feed
character."” In this case, the comma is a place holder. There
really is no "delimiter character," but one must be present in
the parameter in order to define the <term> character.

The /R Parameter

The /R parameter is included for compatibility with DOS SORT and
is redundant. It reverses the sense of sort direction for all
sort keys.

The /S[V] Parameter

The /S parameter tells QSORT to make a statistics report to the

screen at the end of a run. The report is written to the
"standard error" device, the console, and may not be redirected.
The following is an actual statistics report "cut" from the

screen after QSORT had sorted a 1.3+ megabyte file:

QSORT - Text Sort - Version 3.20
Copyright (c) 1985, 1986, 1987 - Ben Baker - All rights reserved

12115 records sorted
150 bytes in longest record

127131 sort phase comparisons
73232 merge phase comparisons

200363 total comparisons
16.5 comparisons per input record

27 temporary merge files created
2 merge passes
2.4 average passes over data

2:51 elapsed time

The first two numbers are self-explanatory. The next two are the
number of times two records were compared during the sort phase
and the merge phase respectively, followed by the total compar-
isons.

The next number is total comparisons divided by the number of

records in the input file. If there is no merge phase, this num-
ber is typically 10 to 12. If the file is large enough to re-
qgquire merging, it is 12 to 20, on average. If it is much larger

than 20, it usually means that there is something unusual about

QSORT Text Sorting Utility Page 7
your input file. It may already be sorted, or there may be large
blocks of records which compare equal. This can happen if you

sort on, say column 50 and the input file contains a large number
of records shorter than 50 bytes. In this case, a minor sort key
at column 1 may significantly speed sorting.

The next two items are self-explanatory. "Average passes over
data" reflects the number of times each record was read and writ-
ten. For short files not requiring a merge pass, this number
will be 1.0. When merging is needed, the last merge pass is the
one which writes the output file and it must read and write every
record exactly once. Thus when only one merge pass 1s made,
there will be exactly 2.0 "average passes over data." In the
above case the first merge pass processed about 40% of the
records, hence the wvalue of 2.4.

The above sort was performed on an Zenith 248, an eight megahertz
AT clone with two hard drives (C and D). The input file was on
C; the temporary merge files were placed on D; and the output
file was written to C. The sort of a 1.3 megabyte file took un-
der three minutes. The same sort on an XT should take about
seven minutes.

The optional subparameter, [V] (for verbose), causes the QSORT
program to make running progress reports to the screen, as well.
Each pass during both the sort phase and the merge phase (if any)
issues a 1l-line report telling the merge file(s) and the number
of records being processed during that particular pass. This is
not terribly useful for short files, but for the big ones, it can
give the wuser a warm comfortable feeling that something is actu-
ally being done.

The /? Parameter

The /? parameter requests help or parameter evaluation. When
QSORT is executed with the /? parameter alone, it lists a short
description of the QSORT parameters. If /? is entered as one of

several parameters, QSORT will produce a short report on the
screen describing the sort it would perform based on those param-
eters without actually doing a sort.

For example:

QSORT /? /L5:12 /-3:2 /22 /T /R <INFILE.TXT >OUTFILE.TXT

requests a sort on a file of tagged records. It defines three
sort keys, one of them inverted (-). The /R parameter reverses
the sense of all three keys. Since redirection is specified,
QSORT does not see or know about the names of the files it will
sort. The /? parameter requests a report, rather than a sort,

and QSORT obligingly produces on the screen, the following:

QSORT Text Sorting Utility Page 8

QSORT - Text Sort - Version 3.20
Copyright (c) 1985, 1986, 1987 - Ben Baker - All rights reserved

With the present arguments, QSORT would sort from STDIN to STDOUT
Records are multiple lines ending with an empty line

Key fields in descending order of importance are:
Field Pos Len Type

1 5 12 Lexical Descending
1 3 2 ASCII
1 22 65535 ASCII Descending

The third key has an unspecified length. The wvalue "65535"
merely means that this key extends to the end of each record.

The /M<len> supported in earlier versions of QSORT is no longer
required, but will be accepted (and ignored) by QSORT. There is
no "hard-coded" maximum record length in QSORT, but there is a

practical limit. At some time during every sort, the two longest
records in the input file must be compared. Therefore, the two
longest records must be able to fit together in the sort buffer.
The sum of their lengths cannot exceed about 50K -- not an alto-
gether unreasonable limitation. QSORT can be shoe-horned into
tighter memory and will ©run if it can find 4K for a sort buffer
and 4K for an output buffer, but the two longest records must

still fit in the sort buffer together.

Arguments may appear in any order on the command line except that
<in_file> must appear before <out_file>, and /<key_spec> argu-
ments must appear in descending order of importance.

Lexical Sorting

The lexical sorting capability was borne out of my own need to
sort word lists with mixed capitalization. ASCII sequence pro-
duced some bizarre results when words beginning with 'Z' sorted
before those beginning with 'a.' Case-insensitive sorting wasn't
much better because upper and lower case got mixed randomly.

QSORT Text Sorting Utility

The following table will illustrate what I mean:

INPUT ASCII CASE LEXICAL
INSENSITIVE

DelLaPort Baker Baker Baker
Smith Brown brown Brown
brown DeAngelo bRown bRown
deLaPorte DelLaPort Brown brown
Deangelo Deangelo Deangelo DeAngelo
deAngelo Deangelo deangelo Deangelo
Brown DelaPort Deangelo Deangelo
smith DelaPorte deAngelo deAngelo
delaPorte Harry DeAngelo deangelo
DelaPort Smith delaPort DelLaPort
DeAngelo bRown DelaPort DelaPort
DelaPorte brown delaPort delaPort
deangelo deAngelo DelLaPort delaPort
Harry deLaPorte DelaPorte DelaPorte
delaPort deLaPorte deLaPorte deLaPorte
Baker deangelo delaPorte deLaPorte
deLaPorte delaPort deLaPorte delaPorte
Deangelo delaPort Harry Harry
bRown delaPorte smith Smith
delaPort smith Smith smith

Page 9

The first column is a list of names in arbitrary order. The sec-
ond is an ASCII sort of that list. Third we have one possible
case-insensitive sort of the 1list. The fourth column is what I
really wanted. It is sorted the way these words would be sorted
in a dictionary (or lexicon). The third and fourth columns both
collect words of identical spellings together, but in the third
column, upper and lower case spellings are in arbitrary order,
while the fourth column places upper case spellings ahead of
lower case spellings.

For example, the two occurrences of Smith are widely separated in
column 2 because one is capitalized and the other is not. Column
3 brings the two together, but in the wrong order. They might
have been in the right order, but the order is strictly arbi-
trary. In column 4, Smith comes before smith, and lexical sort-
ing will always put them in this order.

Lexical sorting is achieved by making case-insensitive compar-
isons of entire keys. If the keys compare equal, an ASCII com-

parison is made to arbitrate ties. In other words, when
"lexical” keys in two records have different spellings, the case-
insensitive comparison determines the order of the records. When

"lexical" keys are spelled the same, the case-sensitive compari-
son determines the order of the records.

Lexical keys are defined, as indicated above, by placing the let-
ter 'L' immediately following the slant-bar (/) in <key_spec>
definitions.

QSORT Text Sorting Utility Page 10

Lexical sorting can be very useful when needed, but be aware that
unnecessarily specifying lexical ordering may degrade performance
of QSORT.

Examples
Produce a sorted directory listing and display it on the console
a screen's worth at a time:
A>DIR | QSORT | MORE

This demonstrates the use of QSORT as a "filter" in a "pipe."

Produce a directory listing sorted by creation date and time, and
display it on the console a screen's worth at a time:

A>DIR | QSORT /30:2 /24:5 /39 /34:5 | MORE
The output of the DIR command is piped to QSORT. The keys de-
fined are, from left to right (major to minor), year (2 digits),

month and day, AM/PM flag and time. The output of QSORT is then
piped to MORE for display.

Next, replace the unsorted FILE.TXT with the same data sorted in
reverse order. Use columns 10 to 16 as the sort key:

>QSORT FILE.TXT /-10:7
or
A>QSORT FILE.TXT /10:7 /R
or (SORT compatible)
A>QSORT FILE.TXT /R /+10
Next, perform a simple sort on a file with up to 240-byte records
A>QSORT LARGE.REC /M240

or

A>QSORT LARGE.REC

Note that the "/M240" parameter is no longer needed, but will
not hurt.

QSORT Text Sorting Utility Page 11

GLOSS.TXT is an unsorted glossary of terms. The term being de-
fined by each entry appears first, followed by several lines of
definition. The entries are separated by empty lines. Produce
GLOSS.SRT, a sorted version of the glossary:

A>QSORT /T <GLOSS.TXT >GLOSS.SRT (with redirection)
or
A>QSORT /T GLOSS.TXT GLOSS.SRT (without redirection)

A lawyer Kkeeps a running log of his Dbillable activities in

TIME.LOG. The first 1line of each entry is "mm/dd/yy hh:mm ac-
count#." He always places a tilde (") in the last line of each
entry. He wishes to sort the log by account number, and by as-

cending date and time within each account:

A>QSORT /16:7 /7:2 /1:5 /10:5 /T~ TIME.LOG

The directory of users for a bulletin board system is kept in a
binary file of fixed-length records 180 bytes long. The user
name 1s a 26-character field beginning in the first position and
the city/state field is a 1l6-character field beginning in the
fortieth position. Sort the file by city/state and name.

C>QSORT /F180 /40:16 /1:26 USER.BBS

DB.TXT is a delimited field output file from dBASE III, Each
record contains 7 fields, delimited by commas. Sort the file to
the screen using field 3 as a sort key.

C>QSORT /D7 /3. <DB.TXT

Here, "standard input" has been redirected to the file. Since no

redirection is given for "standard output," DOS assigns it to
the console by default. This is NOT a sort-in-place!"

You have received a member list from the Society of End-users of

XENIX (SEX.LST). Sort the list by special interest (10 columns
beginning at 70) and name (30 columns beginning at 1). Note that
the file contains no carriage return characters. Since SEX.LST
QSORT Text Sorting Utility Page 12

is a very large file, we wish to obtain running status reports
and a final statistics report.

C>QSORT SEX.LST /70:10 /1:30 /D,\L /SV

The /D parameter is used to redefine the newline sequence as a
naked line feed character.

The file LABEL.TXT contains mailing label images. Each label is
6 lines (1 inch) high. Line six is always empty and line three
is frequently empty. An extended Zip code always begins in col-
umn 20 of line 5, and extends to the end of the line. 1In order
to take advantage of Dbulk mailing rates, the labels must be
sorted into carrier route (CRT) order.

QSORT LABEL.TXT /5.20 /D6\N

We must use a "delimited field" sort rather than a "tagged line"
sort for two reasons: 1) Line six is empty, not tagged with a
special character. When line three is also empty a label would
be broken into two pieces and separated by the sorting process.
2) Our sort key is not at any known offset from the beginning of
the label. 1Its position is fixed only relative to line five.

Error Messages and Return Codes

The QSORT program can encounter a number of different errors dur-
ing execution. Each will generate a brief error message on your
console. This section will attempt to list the messages you may
see, and give you a little more detailed information about what
might have caused the problem.

Command Line Errors

The most common causes of error messages are errors in the com-
mand line parameters. Particularly when using a complicated set
of keys, I recommend the use of "/?" as the last parameter. If
QSORT discovers an error, it will be reported. the QSORT program
will also show you exactly what it would have done, had the "/2"
parameter not been there, but will NOT perform a sort.

You may then hit the "F3" key to recall the command, edit any bat
parameters using the left and right cursor keys and the "INS" and
"DEL" keys. When the command parses without error, and the re-
port looks 1like the kind of sort you wish to make, hit the "F#"
key once more, then back space over the "/?" parameter, then hit
"Enter" and QSORT will do the rest.

QSORT Text Sorting Utility Page 13

A frequent cause of command line errors is the use of multiple
parameters without separating them with spaces. "/5:3/8" is
wrong. "/5:3 /S" is right.

One or more of the following errors might be encountered in the
command line:

Three file names specified

At most, only two file names may be given, an input file and an
output file. The most likely cause of this message is forgetting
to use the "/" character at the beginning of a key spec or other
parameter.

Invalid command line parameter "<parameter>"

This message 1is issued if QSORT receives a parameter it does not
understand. It is wusually a typographic error. You meant "/D"
and hit "/E" by mistake. The message displays the actual parame-
ter it did not understand.

/D, /F and /T parameters are incompatible

Each of the above parameters tells QSORT to use a different scan-
ning routine to parse records. Since only one such routine can
be used, it is an error to use more than one of these parameters.
In those wunusual situations where more than one might apply, use
the most efficient one. (The order of the parameters in this
message is from most efficient to least efficient. See the sec-
tion on "Performance and Input Record Type" for more informa-

tion.)
Multiple /<parameter> parameters encountered

This message again applies to the /D, /F and /T parameters. In
this case, the same parameter appears twice in the command line.

/F<length> parameter with invalid <length>

No substitution is made for "<length>" in this message. This is
the actual message displayed. It means that either there was no
length specified, or the specified length was zero.

Keyfield "<key_spec>" begins beyond end of record
Keyfield "<key_spec>" extends beyond end of record

These two messages refer to fixed-length records. A key specifi-
cation has told QSORT that data exists beyond the bounds of the
record. For instance, suppose that /F20 has been specified.
Then /23 would invoke the first message because the record is
only 20 characters long. Similarly /18:5 begins before the end
of the record but extends beyond it, and would invoke the second

QSORT Text Sorting Utility Page 14
message. Note that /18 is OK. QSORT will assume a length of
three in this case.

Invalid delimited field specification - "<key_spec>"
This one is similar to the previous messages. The "field number"

portion of a key specification was greater than the defined num-
ber of fields. For example "/D5 /6.1:3" would provoke QSORT into

issuing this message. It's hard to find field 6 in a 5-field
record.
ABORT -- Error(s) in command line parameter (s)

If any of the above messages are issued, QSORT will continue to
scan the command line and evaluate the parameters, but will even-
tually issue this message too. If there are command line errors,
QSORT will NOT guess about your data. It will stop!

Memory Errors
ABORT -- Buffer allocation error

An error of unknown origin occurred when QSORT was trying to al-
locate memory for its Dbuffers. The most likely cause here is a

"memory poor" condition caused by a too small partition under a
multitasker such as DoubleDOS, or perhaps too many "terminate-
and-stay-resident" programs. As an absolute minimum, QSORT must
be able to obtain eight kilobytes of contiguous memory for its
sort buffer.

ABORT -- Insufficient memory

This one can occur at any time during the sort. QSORT must have
a sort buffer large enough to hold the two largest records in the
file. Typically, the sort buffer is about fifty kilobytes, which
means that 1if records are shorter than about twenty five kilo-
bytes, QSORT can usually handle them. This is normally a problem
only when using the /T parameter.

I/0 Errors
ABORT -- Unable to open "<file_spec> for input"”
QSORT was attempting to open <file_spec> for input. If
<file_spec> is your input file, you probably misspelled the name.
If <file_spec> has the form "number.SRT" QSORT could not find a
merge file it thought it had created. If this happens you may
have discovered a bug. Please send me full particulars ASAP!
ABORT -- Unable to create "<file_spec>" for output
QSORT was attempting to open <file_spec> for output, and the open

operation failed. The most likely cause is that you ran out of
disk space, and DOS was unable to expand a subdirectory. A root

QSORT Text Sorting Utility Page 15
directory cannot be expanded, and you may have run out of direc-
tory space.
ABORT -- Error reading input or merge file

The section of the program which issues this message does not
know the file name, so cannot help you much there. This message
may mean that your disk has a sector going bad. (Well, it can't
all be good news!)

ABORT -- Error writing to merge or output file

This one could also mean a bad sector, but a far more likely
cause 1s that you just ran out of disk space.

Internal Errors

ABORT -- Internal QSORT error

In theory, this is an error which "can't happen.”"” If you EVER
get this message, please notify me with as many details as you
can supply. Actually I have NEVER seen this message issued by a
released version of QSORT.

ERRORLEVEL Return Codes

When QSORT successfully completes a sort, it terminates with DOS

ERRORLEVEL set to zero. (See your DOS manual for more information
on ERRORLEVEL.) If it terminates for ANY other reason, it sets
ERRORLEVEL to a non-zero value, which can be tested in a batch
file. The following are the ERRORLEVEL codes QSORT uses, and
their meanings:
Code Meaning

0 Successful completion

1 Command line error and/or "/?" parameter specified

2 Open-for-read error

3 Open-for-write error

4 I/0 error reading file

5 I/0 error writing file

6 Memory error

255 Internal error

QSORT Text Sorting Utility Page 16

Implementation Notes

General Information

QSORT is intended as an enhanced replacement for DOS SORT. It is
nearly fully wupward compatible, Dbut provides much more flexi-
bility. Multiple sort keys may be specified, a pseudo in-place
sort may be performed and files and/or records of any size may be
sorted provided only that there is sufficient disk space for work
files and the output file. QSORT uses the "quick sort" algo-
rithm, which cannot guarantee the order of records whose keys are

all equal. This is the one "incompatibility" with DOS SORT,
which retains the original order of records when its only key
compares equal. This is important to SORT because it must be in-
voked multiple times to effect a multiple key sort. With QSORT,
you only sort once and there are usually enough keys available to
insure you get the order you want the first time.

QSORT uses a sort buffer of about 50K Dbytes and will fill the
buffer as full as possible, and then sort its contents. If the
end of the input file has Dbeen reached and no temporary work
files have Dbeen generated, the sorted contents of the buffer are
written to the output file, completing the sort operation.

If the input file is too large to fit into the sort buffer, as
much of the input file as possible is read into the Dbuffer,
sorted, then written to a temporary work file. This process is
repeated as many times as necessary to process the entire input
file, each time creating a new work file for the sorted output.

Upon completion of the "sort phase," QSORT begins a "merge
phase." Each work file is a sorted sub-set of the input file.
Thus, work files may be read sequentially and combined to produce
a sorted output. QSORT will open as many work files as DOS per-
mits (more on this later). 1If all the remaining work files can
be opened, the sorted result is written to the output file.
Otherwise, a new work file is created and another merge pass will
be required. On each merge pass, the number of work files is re-
duced and eventually all remaining work files will be opened and
the sorted output file will be written completing the sort oper-
ation.

Performance and DOS Configuration

QSORT is smart enough to never have just one work file remaining,

which would require an unnecessary copy operation. In fact,
QSORT is smarter than Jjust that in its handling of the merge
phase. If more than one merge pass 1is required, all the data

merged during the first pass will have to Dbe merged again, so
QSORT attempts to minimize the first pass. For example, if QSORT
discovers it may only open 15 files at a time, and there are 16
temporary files, it will only merge two files on the first pass,

creating a 17th file as it does. Then in the second pass, it
QSORT Text Sorting Utility Page 17
will merge all 15 remaining files to the output file. The less

data it processes twice, the faster it performs the sort!

With nothing else to guide it, QSORT places its temporary files
in the default directory. Either of two "environment variables"”
can override this. (See your DOS manual for information on envi-

ronment variables and the SET command.) The DOS command:
SET QSTMP=<path> or
SET TMP=<path> or
SET TEMP=<path>

will define a path for QSORT to use for its temporaries. QSORT
first looks for the environment variable QSTMP. If it does not
exist, QSORT next looks for TMP or TEMP in that order. TMP and
TEMP are de facto standards used by many programs, and are usu-
ally defined in your AUTOEXEC.BAT batch file. You might have TMP
specifying a 64K RAM disk to speed up vyour compiler. In this
case, an attempt to sort a 100K file is doomed to failure.
Rather than redefine TMP, you may define QSTMP to force QSORT to
use some directory on your hard disk. 1In fact:

SET QSTMP=\

tells QSORT to always use the root directory of the default
drive!

CAUTION! The root directory has a fixed size, and is
NOT expandable. For a hard disk, it typically has
room for only 512 file names, less one for each
subdirectory and one for the wvolume label (if
any) . Large files may fail to sort if the QSORT
program must place too many merge files in a root
directory. Subdirectories, on the other hand, are
limited only by available disk space.

QSORT, to work properly, needs enough space on the output disk to
hold the output file. Even if the input file is to be deleted
and resides in the same directory, that is not done until after
the output file has been successfully written. If one merge pass
is required, the disk space QSORT uses for temporary merge files
will be about 10% larger than the size of the input file. If
more than one merge pass will be required, allow about twice the
size of the input file as temporary merge file space.

One of the advantages of controlling where QSORT places its tem-
porary files 1is to 1insure adequate space for them. A second is
speed. If the temporary files can be placed on a separate disk
from the input and output files, disk seeking is minimized and
performance improved.

QSORT Text Sorting Utility Page 18

Each time QSORT must create a new temporary merge file, the data
put into it will be processed again. Obviously, the more files
QSORT can open during the merge phase, the fewer times it will
have to handle each record and the faster it can sort large

files. If DOS is properly pre-conditioned, QSORT can have up to
15 temporary merge files open at once, and very large files can
be sorted with just one sort pass and one merge pass. Unfortu-

nately, that capability is not automatic.

DOS has a fixed number of file "handles" that it associates with

open files. The default number is eight, but DOS opens five of
them for standard input, standard output, standard error, stan-
dard printer and standard auxiliary device. That leaves three
for merging. A 250K input file would produce five temporary

merge files and that would take three merge passes; merge two
into one, leaving four; merge two into one leaving three; and fi-
nally merge three into the output file. In the process, QSORT
must read and write about 80% of the file twice during the merge
phase.

Worse yet, since you need at least three handles for merging, if
you have resident programs that have open files, you can't merge
at all!

DOS can be told to set aside more space for file handles. Each
handle is only 39 Dbytes and it's memory very well spent. One
process can have a maximum of 20 handles open at one time, but
since resident ©processes may be using handles, I recommend 25 to
35. To do this, the root directory of the DISK OR DISKS YOU BOOT
FROM must contain a file named CONFIG.SYS. If your boot disk(s)
already contains a CONFIG.SYS, edit it, or if not, create it to
contain the following line:

FILES=25 (or more)

While we're at it, 1let's add one more thing to CONFIG.SYS which
will improve the performance of QSORT and many other programs as
well. DOS provides, by default, two disk buffers. These are the
buffers it wuses to do its disk reads and writes. During the
merge phase QSORT may have many files open at once, reading from
them in more or less random order. DOS may have to read the same
physical sector several times to get all its data. But DOS can
remember what's in each buffer and where it came from, and will
not re-read a sector it already has in a buffer. DOS needs 528
bytes for each buffer. I recommend 20 buffers to make QSORT per-
form well under the most adverse conditions. This will require
an additional 9504 bytes or slightly more than 9K, again memory
well spent, so we add to CONFIG.SYS the following line:

BUFFERS=20

See your DOS manual for more information on CONFIG.SYS.

QSORT Text Sorting Utility Page 19

Performance and Input Record Type

QSORT must read and parse logical records before sorting them,
then reassemble them before final output. The type of records
contained in the file being sorted determines how much work this
requires, and therefore has an impact on performance.

The present version of QSORT can handle four record types: simple
ASCII, tagged ASCII, delimited field ASCII and fixed length, de-
termined by the presence or absence of a /T, /D or /F parameter
on the command line.

Fixed length records are very structured and require no parsing.
Other things equal, files of fixed length records will sort the
fastest.

When parsing simple ASCII records, QSORT must find and mark the
newline sequence, then restore it for final output. In general,
this is relatively fast, but is affected by line length. In par-
ticular, lines containing "over-strikes" (naked CR characters
followed by more data) can significantly slow down the parsing.

Tagged ASCII records are parsed in a fashion similar to simple
ASCII records, if a tag character is defined. First the tag
character is found, then the next newline sequence is found and
marked. The time required is of course dependant on the total
length of the logical record, but is fairly fast. If no tag
character is defined, two successive newline sequences must be
found. This depends not only on total length, but the number of
lines contained in a logical record.

To parse a delimited field record with n fields, n minus one de-
limiters must be found and marked, then the newline sequence must
be found and marked. It is similar to tagged records with no de-
fined tag character, but because records of this type are usually
shorter than tagged records, parsing delimited field records may
be a 1little faster. It is certainly slower than parsing simple
ASCITI records.

Performance and Sort Keys

The sort keys defined on the command line have a lot to do with
QSORT's performance. There isn't much you can do in the way of a
strategy you can use when you need a particular file sorted in a
particular way, but you should at least be aware.

Several decisions must be made in comparing two records. Which
field contains the current key? Is the field long enough to con-
tain the key in one, both or neither record? Are the keys lexi-
cal or ASCII? If the answers to any of these questions will
remain constant over the course of a sort run, they should be
answered once, not several thousand times!

QSORT Text Sorting Utility Page 20

QSORT has ten record comparison routines varying in degree of
complexity. At the beginning of each sort run it selects the
simplest one possible, based on the parameters given, to be used
throughout the run.

If no sort key parameters are given, the entire record is used as
a key. The compare routine has no decisions it must make -- it
simply compares the two strings handed it. This is the "simple
sort," and is the fastest possible case.

A sort key that does not begin at the beginning of a variable
length record, may not be contained in a particular record at
all, while a fixed length record is known to contain all keys.
Other things equal, files of fixed length records will sort some-
what faster because the compare routine does not have to test for
"key containment."”

Lexical keys are first compared with a "case insensitive" tech-
nique. Each character is tested to see if it is alphabetic. If
it is, it is converted to upper case. Then a converted character
from each record is tested. This is obviously slower than di-
rectly comparing two characters. In the event lexical keys com-
pare equal, they are compared again using a direct compare tech-
nique! Files with lexical keys sort slower than similar files
without them.

In the <case of files with delimited field records, the compare
routine must find the correct field for each key, determine if
the keys are contained within the fields, and finally compare
them. The added step of searching for fields slows record com-
parison.

In general, the more complex the data, the more complex the sort-
ing task and the longer it will take. QSORT attempts to optimize
its performance by making as many decisions as it can about your
data up front, then selecting a compare routine that makes only
the necessary decisions on a record-by-record basis.

Performance and File Size

I received a letter from someone which included a graph showing

QSORT's performance in sorting time vs. file size. He said he
had expected an exponential, or at least a logarithmic curve.
Instead time increased linearly with file size. I admit it puz-

zled me at the time, but Codeview, Microsoft's debugger, made it
ease for me to measure the performance of the various parts of
the QSORT program. It turns out that actual sorting of data ac-
counts for a very small percentage of QSORT's running time. It

spends most of it's time doing I/O. For files up to about 50

kilobytes, it will read and write each record once. From 50K to
about 750K there will be one merge pass and each record will be
read and written twice. Since the amount of I/O increases lin-

early over this range of file sizes, so will sorting time.

QSORT Text Sorting Utility Page 21

Above about 750K a second merge pass will be needed, but in this
size range, only seven to ten percent of the data will be pro-
cessed in the first merge pass, so the sort time vs size curve
will steepen slightly, but will not experience a large step (as
it did in versions 1 and 2). Doubling the file size to 1.5
megabytes should increase the sort time about three times.

Sorting time will be approximately proportional to file size
times the "average passes over data" number from the statistics
report. Since this number remains a constant "2.0" over a wide
range of file sizes, sorting time will be a linear function of
file size in that range.

I hope vyou find this program useful. Your comments and sugges-
tions are welcome. My address is in the next section.

About Shareware

QSORT is made available under the "shareware" concept. Shareware
products are distributed freely and publicly. You are invited to
"test drive" them without cost. But shareware is NOT FREE! If
you use a product, you are expected to pay a fee for its use.
Because overhead costs are minimal, this fee is usually a frac-
tion of the normal commercial price the product might carry, but
it is NOT zero!

If you find this program useful, you are asked to send its author
a license fee of $20 for each machine on which you use it. This
will encourage the development of other useful, affordable tools.

QSORT may be freely copied and distributed. provided that 1) it
is distributed under the name "QSORT," and 2) this documentation
file always accompanies it. Vendors wishing to distribute QSORT
commercially, or with commercial products may contact the author
at the address below for terms.

Send checks to:

Ben Baker

Baker's Acre

RR #1, Box 637

E. Alton, Il 62024

Bug reports or suggestions may be sent to the above address or
via electronic mail to FidoNet node 100/10 or AlterNet node
44/76, or by logging into Baker's Acre BBS at 618-251-2169.

